

# Using SAS and STATA in Archival Accounting Research

Kai Chen Dec 2, 2014

### Overview

- SAS and STATA are most commonly used software in archival accounting research.
- SAS is harder to learn. STATA is much easier.
- At different empirical work stage, one is much more powerful than the other. Specifically,
  - ✓ At sample selection stage, the unquestionable winner is SAS.
  - ✓ At data analysis stage, the unquestionable winner is STATA.
- Both SAS and STATA have a great ability to add useful macros or commands developed by other users (STATA has an edge on SAS).

### SAS is more powerful at sample selection stage

- Archival researchers often need to extract data from various databases on WRDS.
- SAS is much more efficient for such task (i.e., merging data) because:
  - ☑ WRDS is powered by SAS.
  - SAS fully supports SQL (Structured Query Language), a special-purpose programming language designed for merging data.
- STATA only has a "baby" merge function.

- Take several typical situations for example
- ▶ **Situation 1:** Calculate change in a variable, for example,

| Firm | Year | Sales | ⊿Sales |
|------|------|-------|--------|
| A    | 2008 | 101   |        |
| А    | 2009 | 80    | ?      |
| A    | 2010 | 95    |        |
| A    | 2011 | 110   |        |
| В    | 2008 | 1001  |        |
| В    | 2009 | 800   |        |
| В    | 2010 | 900   |        |
| В    | 2011 | 950   |        |
| С    | 2008 | 245   |        |
| С    | 2009 | 254   |        |
| С    | 2010 | 307   |        |
| С    | 2011 | 298   |        |

▶ **Situation 1:** Calculate change in a variable, for example,

| SAS                                                                                                                                                                        | STATA |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>proc sql</b> is probably the most convenient procedure.                                                                                                                 |       |
| <pre>proc sql;<br/>create table temp<br/>as select a.*, b.sale as lagsale<br/>from dataset a left join dataset b<br/>on a.firm=b.firm and a.year=b.year+1;<br/>quit;</pre> |       |
| ✓ Alternatively, use lag function in a data step.                                                                                                                          |       |

▶ **Situation 1:** Calculate change in a variable, for example,

| SAS                                                                                                                                                                                                                            | STATA                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| groc sql is probably the most convenient procedure.                                                                                                                                                                            | ✓ Two-line commands:                                          |
| <pre>proc sql;<br/>create table temp<br/>as select a.*, b.sale as lagsale<br/>from dataset a left join dataset b<br/>on a.firm=b.firm and a.year=b.year+1;<br/>quit;<br/>@ Alternatively, use lag function in data step.</pre> | <pre>tsset firm year, yearly generate chg_sale = D.sale</pre> |

▶ **Situation 1:** Calculate change in a variable, for example,

| SAS                                                                                 |                 | STATA                               |
|-------------------------------------------------------------------------------------|-----------------|-------------------------------------|
| <b>proc sql</b> is probably the most convenient procedure.                          | ☑ Two-line comr | mands:                              |
| <pre>proc sql;   create table temp   as select a.*, b.sale as lagsale</pre>         |                 | m year, yearly<br>chg_sale = D.sale |
| <pre>from dataset a left join dataset b on a.firm=b.firm and a.year=b.year+1;</pre> | ✓ Many useful v | ariations, for example:             |
| quit;                                                                               | L.sale          | sale t-1                            |
| Alternatively, use lag function in data step.                                       | L2.sale         | sale t-2                            |
|                                                                                     | F.sale          | sale t+1                            |
|                                                                                     | F2.sale         | sale t+2                            |
|                                                                                     | D.sale          | sale t - sale t-1                   |

▶ **Situation 2:** Fixed effects regression, for example,

DepVar = IndepVar + Year Effect

| SAS                                                                                                            | STATA |
|----------------------------------------------------------------------------------------------------------------|-------|
| <b>gproc glm</b> is probably the most convenient procedure.                                                    |       |
| <pre>proc glm data=dataset;<br/>class year;<br/>model DepVar=IndepVar year /solution;<br/>run;<br/>quit;</pre> |       |
| Alternatively, use proc reg, but time-consuming.                                                               |       |
| <u>Step 1</u> : Manually generate dummy variables for each sample year.                                        |       |
| Step 2: Bring all DepVar, IndepVar, and year dummies into <b>proc reg</b> procedure.                           |       |

▶ **Situation 2:** Fixed effects regression, for example,

DepVar = IndepVar + Year Effect

| SAS                                                                                                            | STATA                          |
|----------------------------------------------------------------------------------------------------------------|--------------------------------|
| <b>proc glm</b> is probably the most convenient procedure.                                                     | ✓ Single-line command:         |
| <pre>proc glm data=dataset;<br/>class year;<br/>model DepVar=IndepVar year /solution;<br/>run;<br/>quit;</pre> | regress DepVar IndepVar i.year |
| Alternatively, use proc reg, but time-consuming.                                                               |                                |
| Step 1: Manually generate dummy variables for each sample year.                                                |                                |
| Step 2: Bring all DepVar, IndepVar, and year dummies into <b>proc reg</b> procedure.                           |                                |

Example dataset contains seven years data (from 2006 to 2012)

. regress depvar indepvar i.year

| Source       | SS         | df    | MS         | Number of obs = 62223                          |
|--------------|------------|-------|------------|------------------------------------------------|
| <br>Model    | 2.4489e+12 | 7     | 3.4985e+11 | F(7, 62215) = 2050.73<br>Prob > F = 0.0000     |
| <br>Residual | 1.0614e+13 | 62215 | 170595756  | R-squared = 0.1875<br>Adj $R-squared = 0.1874$ |
| Total        | 1.3063e+13 | 62222 | 209934363  | Root MSE = $13061$                             |

| depvar       | Coef.    | Std. Err. | t      | P> t  | [95% Conf. | Interval] |
|--------------|----------|-----------|--------|-------|------------|-----------|
| <br>indepvar | .0619532 | .0005175  | 119.71 | 0.000 | .0609389   | .0629675  |
| year         |          |           |        |       |            |           |
| 2007         | 200.8505 | 192.4999  | 1.04   | 0.297 | -176.4497  | 578.1508  |
| 2008         | 296.0818 | 193.7499  | 1.53   | 0.126 | -83.66845  | 675.8321  |
| 2009         | 119.5906 | 194.5418  | 0.61   | 0.539 | -261.7116  | 500.8929  |
| 2010         | 342.9851 | 194.8196  | 1.76   | 0.078 | -38.86183  | 724.832   |
| 2011         | 587.7027 | 194.9924  | 3.01   | 0.003 | 205.5172   | 969.8882  |
| 2012         | 510.0516 | 192.4881  | 2.65   | 0.008 | 132.7745   | 887.3287  |
|              | Í        |           |        |       |            |           |
| <br>_cons    | 1965.11  | 134.99    | 14.56  | 0.000 | 1700.529   | 2229.69   |

▶ **Situation 3:** Clustered or Rogers standard errors, for example,

"All specifications include year and industry fixed effects and standard errors are heteroskedasticity robust, clustered at the firm level." (Costello, 2013)

| SAS                                                                                                     | STATA |
|---------------------------------------------------------------------------------------------------------|-------|
| <b>proc</b> surveyreg is probably the most convenient procedure.                                        |       |
| <pre>proc surveyreg data=dataset;<br/>cluster firm;<br/>model DepVar=IndepVar;<br/>run;<br/>quit;</pre> |       |

▶ **Situation 3:** Clustered or Rogers standard errors, for example,

"All specifications include year and industry fixed effects and standard errors are heteroskedasticity robust, clustered at the firm level." (Costello, 2013)

| SAS                                                                                                     | STATA                                 |
|---------------------------------------------------------------------------------------------------------|---------------------------------------|
| proc surveyreg is probably the most convenient procedure.                                               | Single-line commands:                 |
| <pre>proc surveyreg data=dataset;<br/>cluster firm;<br/>model DepVar=IndepVar;<br/>run;<br/>quit;</pre> | regress DepVar IndepVar, vce(cl firm) |

A technical article concludes:

"It is difficult to perform robust regression, or other kinds of robust methods in SAS. ... STATA has a very nice array of robust methods that are very easy to use."

STATA's estimation procedures are more additive. For example, if we have to handle both fixed effects and clustered standard errors:

```
✓ STATA: single-line command:
```

```
regress DepVar IndepVar i.year, vce(cl firm)
```

SAS: more complicated (proc surveyreg maybe the best)

▶ **Situation 4:** Interaction, for example,

 $DepVar = A + B + A^*B$ 

| SAS                                                            | STATA |
|----------------------------------------------------------------|-------|
| ⊠Use proc reg                                                  |       |
| <u>Step 1</u> : Manually generate a new variable equal to A*B. |       |
| Step 2: Bring all variables into <b>proc reg</b> procedure.    |       |
| 🗹 Alternatively, proc glm may be simpler.                      |       |

Situation 4: Interaction, for example,

 $DepVar = A + B + A^*B$ 

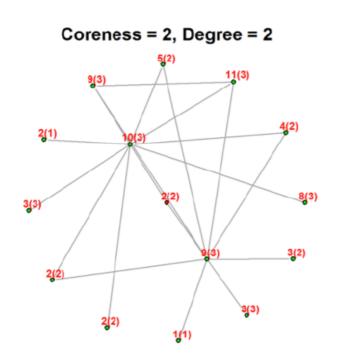
| SAS                                                            | STATA                                  |
|----------------------------------------------------------------|----------------------------------------|
| ☑ Use proc reg                                                 | ✓ One-step command:                    |
| <u>Step 1</u> : Manually generate a new variable equal to A*B. | regress DepVar c.A <mark>##</mark> c.B |
| Step 2: Bring all variables into <b>proc reg</b> procedure.    |                                        |
| Alternatively, <b>proc g1m</b> may be simpler.                 |                                        |

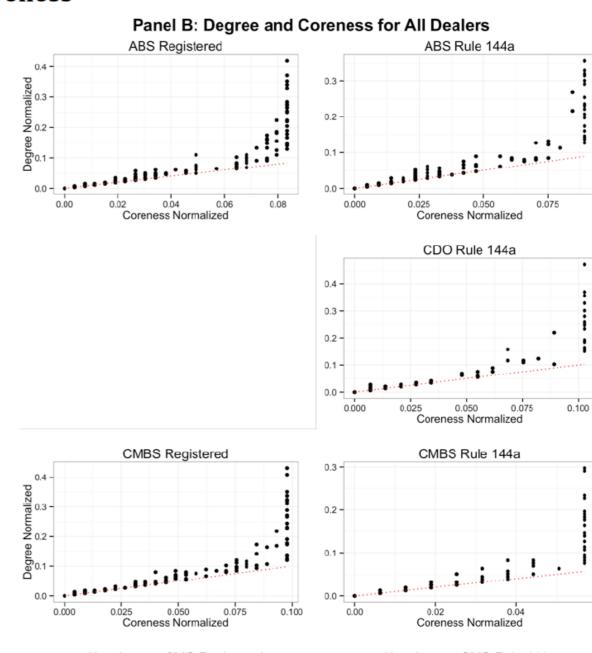
#### Situation 5: 2SLS

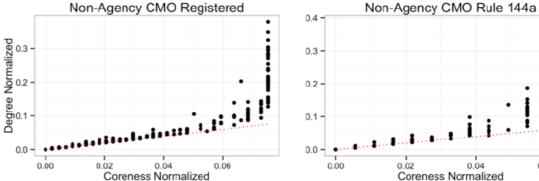
2SLS is used when the model has endogenous independent variables (a common reason is omitted variables).

Once again:

✓ SAS: at least two regressions

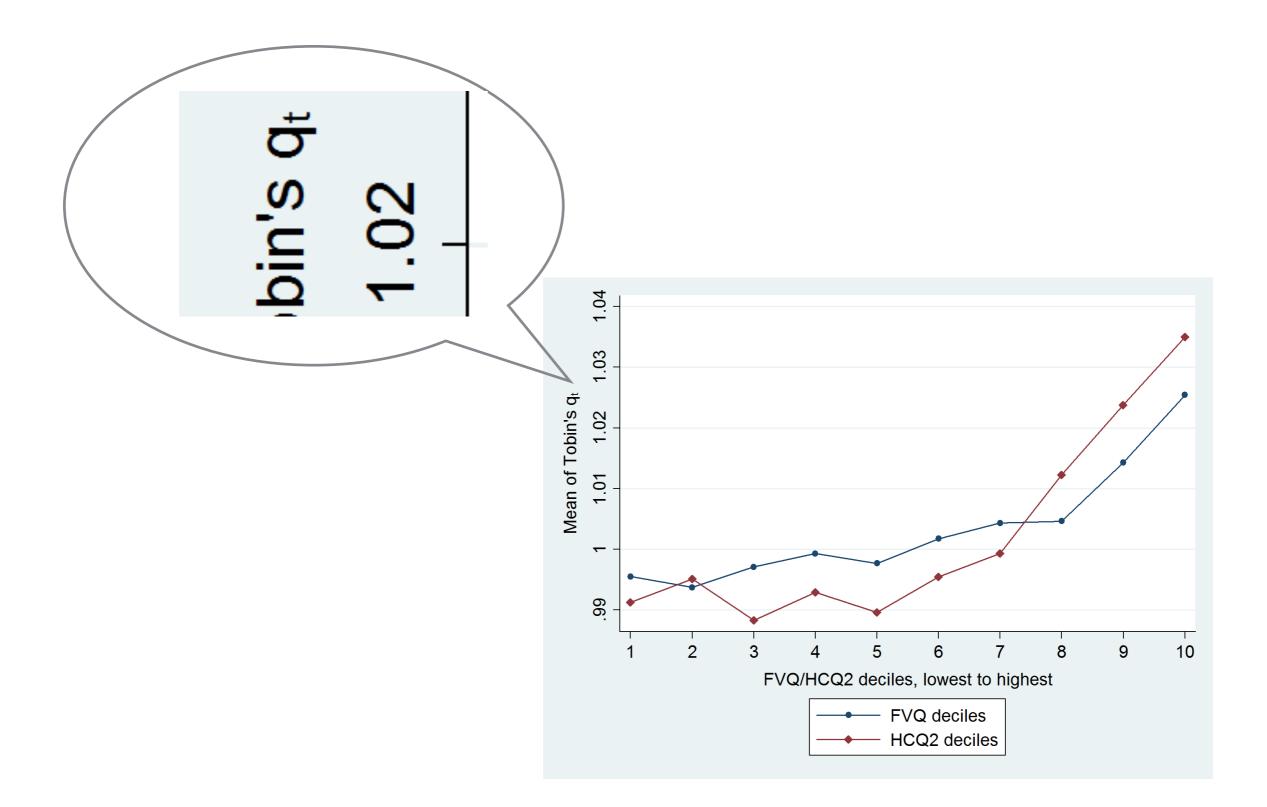

✓ STATA: single-line command (ivregress) to complete 2 stages at once


Situation 6: Graphics. Remember Hollifield's paper two weeks ago?


| SAS                                                                               | STATA                                                       |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| May have the most powerful graphic tools, but very technical and tricky to learn. | Graph commands are very easy to use and also very powerful. |  |
|                                                                                   | Easily create publication quality graphs.                   |  |
|                                                                                   | ✓ Can be edited using a graph editor.                       |  |

#### **Figure 6: Non-Retail Dealers' Degree and Coreness**

Panel A: Degree and Coreness for Two Dealers in ABS Reg.








0.06

Coreness = 2, Degree = 7 1(1) 4(3) 11(3) 6(3) 2(1) 3(2) B(3) 1(1) 7(2) 4(2) 2(2) 2(2) 5(2) 4(3) 6(2) 1(1) 4(2) 3(2) 2(2) 3(2) 2(2) 1(1)



- In short, for almost every single task in data analysis (sort, drop, group, summary statistics, regressions),
  - STATA code is shorter, more intuitive, and closer to natural language than SAS code.
  - STATA has more easy-to-use cutting-edge estimation procedures than SAS.

#### Top user-written macros and commands in SAS and STATA

- Both SAS and STATA users develop macros or commands for free download to enhance the software capability.
- To use macros developed by other users in SAS, we need a DIY spirit.
- Install a user-written command in STATA is much easier, thanks to Boston College Department of Economics and Christopher Baum.

#### **Top user-written SAS macro**

#### **EVTSTUDY**

This macro calculates Cumulative Abnormal Returns:

- ✓ We tell the macro permno and event date
- ✓ The macro returns cumulative abnormal return within the event window (we can specify 3-day or 5-day or other).
- ✓ We can specify which model to use: market-adjusted model, standard market model, Fama-French 4-factor model.

#### OUTREG OF OUTREG2

Linear regression

STATA command to write estimation tables to a Word or TeX file. For example, I run 5 regressions and each returns a table like this.

| Number of | obs | = | 668    |
|-----------|-----|---|--------|
| F( 31,    | 40) | = | 730.60 |
| Prob > F  |     | = | 0.0000 |
| R-squared |     | = | 0.4137 |
| Root MSE  |     | = | .13863 |

(Std. Err. adjusted for 41 clusters in rssd9001)

| ret          | Coef.     | Robust<br>Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|--------------|-----------|---------------------|-------|-------|------------|-----------|
| s_nidva      | .4027016  | .0608822            | 6.61  | 0.000 | .279654    | .5257491  |
| s_dva        | 7.82537   | 2.086251            | 3.75  | 0.001 | 3.6089     | 12.04184  |
| uf           | 0127315   | .0398658            | -0.32 | 0.751 | 0933031    | .0678402  |
| c.s_dva#c.uf | -14.69152 | 3.300949            | -4.45 | 0.000 | -21.36299  | -8.020056 |
| s_imp        | .223543   | .2035808            | 1.10  | 0.279 | 1879092    | .6349952  |
| s_oci        | 1.059702  | .4082858            | 2.60  | 0.013 | .2345256   | 1.884878  |

|                     | RET        | RET                   | RET                   | RET                   | RET                   |
|---------------------|------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <u>s_nidva</u>      | 0.379      | 0.350                 | 0.362                 | 0.397                 | 0.412                 |
|                     | (0.082)*** | (0.081)***            | (0.090)***            | (0.060)***            | (0.068)***            |
| <u>s_dva</u>        | -2.284     | 10.719                | 10.713                | 8.034                 | 8.005                 |
|                     | (1.793)    | (2.036)***            | (2.052)***            | (2.332)***            | (2.381)***            |
| imr                 | 0.007      | 0.007                 | 0.007                 | 0.004                 | 0.005                 |
|                     | (0.008)    | (0.008)               | (0.008)               | (0.008)               | (0.008)               |
| uf                  |            | 0.022 (0.058)         | 0.018<br>(0.059)      | -0.006<br>(0.048)     | -0.012<br>(0.047)     |
| <u>c.s_dva#c.uf</u> |            | -19.095<br>(3.298)*** | -19.128<br>(3.312)*** | -15.301<br>(3.663)*** | -15.314<br>(3.705)*** |
| <u>s_imp</u>        |            |                       | 0.179<br>(0.204)      |                       | 0.230<br>(0.202)      |
| <u>s_oci</u>        |            |                       |                       | 1.056<br>(0.411)**    | 1.064<br>(0.417)**    |
| _cons               | -0.112     | -0.130                | -0.127                | -0.105                | -0.101                |
|                     | (0.025)*** | (0.051)**             | (0.052)**             | (0.046)**             | (0.046)**             |
| R <sup>2</sup>      | 0.38       | 0.39                  | 0.39                  | 0.41                  | 0.41                  |
| N                   | 668        | 668                   | 668                   | 668                   | 668                   |

**OUTREG** can report all results in a more publishable table.

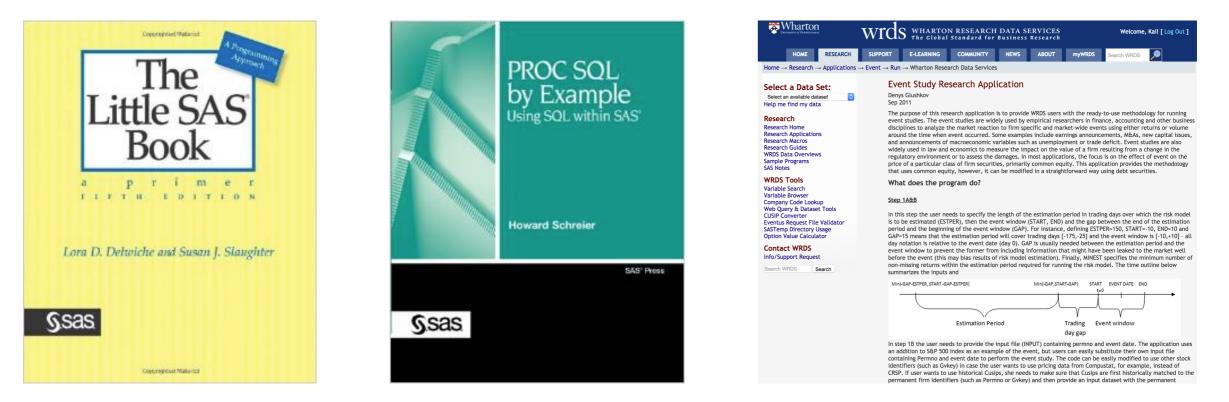
\* p<0.1; \*\* p<0.05; \*\*\* p<0.01

#### **WINSOR**

STATA command to winsorize a variable:

- ✓ We can specify the winsorization percentage (1% or 5% or other).
- ✓ We can do a one-sided winsorization.

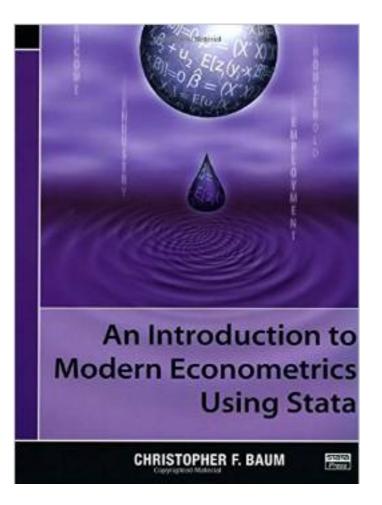
▶ MDESC


STATA command to tabulate prevalence of missing values.

. mdesc

| Variable | Missing | Total  | Percent Missing |
|----------|---------|--------|-----------------|
| gvkey    | 0       | 78,270 | 0.00            |
| datadate | 0       | 78,270 | 0.00            |
| fyear    | 338     | 78,270 | 0.43            |
| tic      | 6       | 78,270 | 0.01            |
| at       | 15,664  | 78,270 | 20.01           |
| sale     | 16,032  | 78,270 | 20.48           |
|          |         |        |                 |

## In the end—which to choose, SAS or STATA?


- ▶ My suggestion is **both**, but for different tasks.
- If you often use WRDS and merge data, SAS SQL is almost a must and will greatly improve your work efficiency.
- Learning resources:



Event study application at WRDS. <u>http://wrds-web.wharton.upenn.edu/wrds/research/applications/event/run/</u>

### In the end—which to choose, SAS or STATA?

- Once you get all data and start to do data analysis, then STATA
- Learning resource:

